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Forced convection heat transfer in doubly connected ducts bounded externally by a circle 
and internally by a regular polygon of various shapes is analysed using a finite element 
method. Hydrodynamically and thermally developed, steady, laminar f low of a constant 
property f luid is investigated. An insulated outer tube and constant heat f lux at the inner 
core are considered. Temperature profiles as well as Nusselt numbers are presented. Salient 
characteristics of the temperature field in such passages are identified. Correlations for the 
Nusself number with aspect ratio are suggested. 

K e y w o r d s :  doubly connected ducts, thermally developed temperature field, Nusselt 
number, friction factor, Reynolds number 

I n t r o d u c t i o n  

This paper is in continuation of an earlier paper 1 in which the 
characteristics of fluid flow in doubly connected ducts bounded 
externally by a circle and internally by a regular polygon of 
various shapes have been reported. In the present paper, the 
forced convection heat transfer results in such passages are 
reported. Hydrodynamically and thermally developed, steady, 
laminar flow of a constant property fluid is investigated. 
Thermal boundary conditions of the second kind, ie insulated 
outer tube and constant heat flux at the inner core, are 
considered. A finite element solution algorithm has been 
developed for the two-dimensional equations governing the 
flow and temperature fields. As the earlier pape rl covers (i) the 
literature review in detail, (ii) utility of the problem, (iii) method 
of solution, including the finite element solution algorithm, 
kinds of elements chosen (Fig 2), and number of elements taken 
(Fig 2), these are not discussed here. 

Cheng and Jamil 2 have obtained the Nusselt number values 
for H1 type thermal boundary conditions for such passages 
using the collocation method. Sastry a has investigated the fifth 
kind of thermal boundary condition for an annulus with a 
square core, with the help of a Schwarz-Neumann alternating 
method. 

A n a l y s i s  

The annular passage in which flow and heat transfer take place 
is shown in Fig 1. The inner core is concentric with the outer 
tube and has sharp corners. For the steady, laminar, 
hydrodynamically as well as thermally fully developed flow of a 
constant property Newtonian fluid the governing energy 
equation in the cylindrical coordinate system is 

82t 1 t3t 1 632t u 8t 

t3r 2 t - r~r r  + r E {~0 2 --~t ~ Z  ( l )  

The thermal boundary conditions associated with Eq (1), which 
are considered in the present paper, are of the Neumann type: 

-k(~t / t~nl )  = q~,l at the inner wall (2) 
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- k(St/~nl)  = cI'~,2 = 0 

at the insulated outer wall (3) 

where qw.1 and qw,2 are the heat fluxes at the inner and the outer 
walls, which are considered invariant in the axial direction. 

For the axially invariant heat fluxes at the boundaries and the 
corresponding fully developed temperature field, the rate of 
temperature variation in the axial direction is assumed to be 
constant everywhere and equal to the rate of bulk mean 
temperature variation in the axial direction 4. This implies 

t~t _ ~ t  m _ ~ t w , 1  = 8 t w , 2  = constant (4) 
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Figure 2 Elements: abed is smallest symmetrical  portion of the 
cross-section. Shaded subdomains are some typical elements. Total 
number of elements=145. Total number of nodes=175 
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The value of the constant in Eq (4) depends upon the heat fluxes 
at the inner and the outer walls. From energy balance one can 
obtain 

dtm qw,l 
- - = c o n s t a n t  (5) 

dz uACpp 

It should be noted that Eq (5) takes into account the fact that the 
outer wall is insulated. Using Eqs (4) and (5),the energy 
equation (Eq (1)) is converted into the following dimensionless 
form: 

02T 1 OT 1 632T 
OR 2 b ~ - ~  R2 ~0 2 U*A*=O (6) 

where 

U * =u/(t; A* =R2P1/A; C 2 =ilw,lR2/P,k (7) 

and 

R = r/R 2 ; T = (t - tw, 2)/C 2 ; n* = n 1/R2 (8) 

Here, it has been assumed that the outer wall, which is circular, 
is at an average temperature tw, 2 which is independent of 0. This 
assumption is expected to be good for most of the range of 
aspect ratio ft. Only as fl---*l may a deviation occur. This 
situation is discussed below. 

The corresponding boundary conditions (Eqs (2) and (3)) for 
Eq (6) are 

OT/t3n*= - 1 at the inner wall (9) 

T =  0 at the outer wall (10) 

It should be noted that the condition at the outer wall (Eq (10)) 
implies a known value of temperature tw, 2 there. The variation 
of  tw. 2 in the developed region in the axial direction is known 
through Eq (4). However, the temperature (tw,2) o of the outer 
wall at the start of the developed region can be determined only 
after solving the developing region problem, which is more 
complicated and expected to be three-dimensional in nature. 
The matching of temperature field for the developing and the 
developed region makes the temperature field in the developed 
region unique for the Neumann type of boundary conditions. 
However, the solution in the developed region is determined 
here with (tw,2) o as reference temperature. It should be noted 
that the insulated outer wall condition has been incorporated in 
the evaluation ofdtm/dz (Eq (5)) and thus in the definition of the 
dimensionless temperature T through the constant C 2. The 

temperature distribution in the developed thermal region will, 
therefore, have a zero gradient normal to the wall at the outer 
boundary. 

Values of velocity, u and U*, which have been obtained by 
solving the governing momentum equation for fully developed 
laminar flow', are substituted in Eq (6) when its solution is 
sought. This implies that the velocity profiles are unaffected by 
the temperature field since the viscosity of the fluid is assumed to 
be invariable because of the moderate temperature range under 
consideration 4,s. 

R e s u l t s  and  d i s c u s s i o n  

The results which are presented here are the temperature 
profiles (Fig 3), isotherms (Fig 4) and the Nusselt numbers 
(Fig 5 and Table 2). 

Confirmatory results 

The algorithm developed is tested with a circular annulus case 
for which the solutions are available 4. The comparison of both 
the detailed (not given here, for brevity) and overall results 
(Table 2) is found to be excellent. 

No solution is reported in the literature for the temperature 
field in the non-circular annulus under consideration for the 
thermal boundary conditions of the second kind. 

Temperature field 

Temperature profiles 

The typical temperature plots are given for the non-circular 
annulus with a square core for aspect ratio fl = 0.5 in Fig 3, and 
the corresponding isotherms in Fig 4. Similar trends of the 
temperature variations are found for other non-circular annuli 
studied and for higher and lower aspect ratios in each case. 
Hence, figures for other cases are not given here. It is observed 
that the temperature difference in the angular direction 
increases as the aspect ratio increases and as the number of core 
sides decreases, and vice versa. 

Inner wall temperature, Tw.1 
An inspection of Fig 3 reveals that the temperature Tw, 1 a t  the 
inner wall is maximum at the midpoint of the core side and it 

N o t a t i o n  
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Area of flow, m 2 
Reference t emperature-  ~lw,a R2/P~ k, K 
Specific heat of fluid, J/(kg K) 
Hydraulic d i ame te r -  4A/P, m 
Heat transfer coefficient - ~w,1/(7"w,1 - Tin), 
W/m 2 K 
Thermal conductivity of fluid, W/(m K) 
Nusselt number =hDh/k or (Dh/R2)/(Tw, 1 - T m )  
Unit normal vector (heat flux going to the fluid is 
positive) 
Number of inner core sides 
Wetted per imeter -  P1 + P2,  m 
Perimeter of the inner boundary and of the outer 
boundary, respectively, m 
Constant heat rate per unit axial length from the 
inner wall, W/m 
ffw, i/P1, W/m 2 
Polar coordinates: radial, m; angular, radian; 
axial, m 
Dimensionless radial distance - f i R  2 
Radii of the corner of the inner polygonal core 
and outer circular tube, respectively, m 

R N  

T 
Tm 

5rw,l 

t 

tw,1, tw,2 

tm 
U,/~ 

Dimensionless radial gap = (R - s sec 0)/ 
(1 - s  sec 0) 
Perpendicular distance from the centre to the side 
of the inner core, m 
Dimensionless temperature =- (t - tw,2)/C 2 
Dimensionless bulk mean temperature = 

Average dimensionless temperature of the inner 
wall at an axial location z 
Temperature, K 
Inner and outer wall temperatures, respectively, 
K 
Bulk mean tempera ture-  ( ~  tu dA)/(Afi), K 
Velocity in axial (z) direction and average 
velocity u at any z, respectively, m/s 
Thermal diffusivity - k/pCp, mZ/s 
Aspect ratio R1/R z 
Density 

Subscript 
s Inner wall 
2 Outer wall 
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Figure 3 Temperature profiles for annulus with square core, fl=0.5, 
number of elements=145: (a) T versus R; (b) T versus RN 

decreases towards the corner. I t  is found so for al l  the cases. I t  is 
seen that the difference between the maximum and minimum 
inner wall temperature decreases as the number of core sides 
increases, ie the inner wall temperature tends to become uniform 
as the number of sides increases. For each shape of the inner 
core, the difference increases with an increase in aspect ratio. 

Fluid temperature 

Fig 3(a) shows that the fluid temperature T at the same R is 
highest at the section through the corner and least at the section 
through the midpoint of the core side, ie it increases with an 
increase in 0. It is so because, as 0 increases, the convection 
conductance is higher and also points at the same R move closer 
to the inner wall. The convection conductance is discussed 
below. 

hydrodynamically and thermally fully developed region could 
be considered as a function of radial coordinate alone up to a 
certain aspect ratio dependent on the shape of the inner core, as 
given in Table 1. 

Thus the effect of the inner wall is more pronounced at higher 
aspect ratios. As the sharpness of a corner of the inner core 
increases, the angular variation of temperature increases. 

Temperature gradient at the outer wal l  

Fig 3 shows that the temperature gradient normal to the 
boundary at the outer wall is zero. The outer wall was kept 
insulated. Thus, it justified the change of the thermal boundary 
condition at the outer wall from the prescribed temperature 
gradient given by Eq (3) to the one of prescribed temperature T 
given by Eq (10). 

Convection conductance 

It can be observed from Fig 4 that isotherms move closer as 0 
increases from zero to its value at the corner. This implies that 
the heat flow rate increases as 0 increases. Thus the convection 
conductance is greatest at the section through the corner. 

The relative distances between the isotherms reveal that the 
temperature gradients near the inner wall are large and those 
near the outer wall are small. This indicates that the 
conductance to the heat flow is higher in the region near the 
inner wall than that in the region near the outer wall. 

Nusselt numbers 
Fig 5 and Table 2 reveal that Nusselt number Nul ~ decreases 
monotonically for the entire range of aspect ratio; the fall is 
steep when aspect ratio increases from 0.02 to about 0.2, and it is 
gradual thereafter. 

Fig 5 also shows that the Nusselt number does not vary 
significantly with the shape of the inner core and that it could be 
predicted for most of the range of aspect ratio from that of the 
circular annulus having the same aspect ratio. The hydraulic 
diameter D h is used in the definition of the Nusselt number. 

From Fig 5 it is seen that Null  and the product ( fRe) l  of 
friction factor at the inner wall and the Reynolds number have 
similar variation. An attempt has been made to relate Nu~ ~ to 
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Table I Maximum aspect ratio for temperature field to be 
considered a function of radial coordinate alone 

Angular  variation of  temperature T 

The angular variation of temperature is small at low aspect 
ratios. It is observed that the temperature field in the 

Inner core 
sides, n 3 and 4 6 8 18 
Aspect ratio fl 0.1 0.3 0.5 0.7 
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fl; inner wall heated, outer wall insulated (boundary condit ions of the 
second kind) 

Table 2 Nusselt numbers 

Circular 
Core sides, n annulus 

Aspect 
ratio fl 3 4 6 8 18 Present Ref 6 

0.02 39.880 38.656 37:832 37.570 37.328 35.925 
0.04 23.010 22,458 22.096 21.986 21.884 21.397 
0.05 . . . . . .  17.81 
0.06 17,182 16,869 16.673 16.617 16.570 16.329 
0.08 14,164 13.977 13.870 13,844 13.826 13.687 
0.10 12.294 12.186 12.136 12.129 12,132 12,044 11.91 
0.15 9.686 9.691 9.724 9.747 9.780 9.748 - 
0.20 8.311 8.374 8.453 8.493 8.544 8.534 8.499 
0.25 7.458 7.554 7.661 7.712 7.776 7.777 7.754 
0.30 6.880 6.993 7.118 7.178 7.250 7.258 - 
0.35 6.467 6.590 6.723 6,788 6,869 6.881 - 
0.40 6.163 6.289 6.424 6,492 6,579 6,594 6.583 
0.45 5.933 6.060 6.192 6.261 6.351 6.340 - 
0.50 5.754 5.885 6.008 6.076 6.169 6.189 6.181 
0.55 5.609 5,749 5,863 5.927 6.020 6.042 - 
0.60 5.483 5.641 5.747 5.805 5,895 5.919 5,912 
0.65 5,362 5,550 5,656 5,706 5.791 5.815 - 
0.70 5,237 5.460 5.582 5.626 5.702 5.726 - 
0.75 5.099 5.354 5.516 5.562 5.626 5.650 - 
0.80 4.949 5,214 5.435 5.505 5,562 5.584 5.385 
0.85 4,793 5.031 5.299 5.426 5,508 5.526 - 
0,90 4.643 4.810 5,049 5.248 5.463 5,475 - 
0.925 4.574 4,694 4,869 5.076 5.433 5.452 - 
0.950 4.511 4.579 4.657 4.822 5.362 5.430 - 
0.975 4.454 4.463 4.419 4.479 5.098 5.409 - 
0.999 4.405 4.345 4.138 4.023 3.948 5.391 - 
1.000 . . . . . .  5.385 

the aspect ratio so that by knowing just the aspect ratio a 
designer can predict N U l l  for the given annuli. As discussed in 
the previous pape rl, a cubic equation is found suitable: 

NU 11 = a2 + b2fl + c2fl 2 + d2fl 3 (11 ) 

The least-square curve fit method is employed for evaluating the 
constants a2, b2, C 2 and d 2. The values of the constants are given 
in Table 3. 

Conclusions 

For the temperature field in the doubly connected duct 
geometries studied and for the solution technique used the 
following conclusions can be drawn. 

(1) Application of the present finite element solution algorithm 
allows successful analysis of the doubly connected ducts 
studied. 

(2) The temperature field can be described by the radial 
coordinate alone in the hydrodynamically and thermally 
fully developed region up to a certain aspect ratio dependent 
on the shape of the inner core (Table 1). 

(3) The convection conductance is predominantly high in the 
region close to the inner wall. 

(4) In the comer region, the convection conductance is 
significantly high. 

(5) The hottest spot is the midpoint of the inner core side. (It 
may be mentioned that in the case of heat transfer in non- 
circular ducts, a comer attains the highest temperature for 
axially and peripherally constant heat flux6.) 

(6) The Nusselt number can be expressed as a simple function of 
aspect ratio (Eq (11)). 

(7) The Nusselt number does not vary significantly with the 
shape of the inner core. It can be predicted closely for most 
of the range of aspect ratio from the results of the circular 
annulus having the same aspect ratio. The hydraulic 
diameter is used in the definition of the Nusselt number. 
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Table 3 Constants in correlation for Nusselt number at the inner wall (Eq (11 )) for aspect ratio range 0.1 to 0.9 

Stand. 
Core sides a 2 b2 c2 d2 dev. 

3 16.0168 - 51.0596 82.6183 - 44.7490 0.041 
4 15.8512 -49 .8181  81.1283 - 4 4 . 0 8 5 0  0.036 
6 15.6380 - 47.6022 76.5220 - 4 1 . 0 1 5 7  0.034 
8 15.5008 - 4 6 . 0 7 8 4  73.0233 - 3 8 . 5 7 7 0  0.035 

18 15.3720 - 4 4 . 6 0 1 6  69.8659 - 36.4954 0.036 
Circularannulus (FEM) 15.2320 - 4 3 . 7 7 8 7  68.5532 - 3 5 . 8 3 3 6  0.035 
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